If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+1=180
We move all terms to the left:
5n^2+1-(180)=0
We add all the numbers together, and all the variables
5n^2-179=0
a = 5; b = 0; c = -179;
Δ = b2-4ac
Δ = 02-4·5·(-179)
Δ = 3580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3580}=\sqrt{4*895}=\sqrt{4}*\sqrt{895}=2\sqrt{895}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{895}}{2*5}=\frac{0-2\sqrt{895}}{10} =-\frac{2\sqrt{895}}{10} =-\frac{\sqrt{895}}{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{895}}{2*5}=\frac{0+2\sqrt{895}}{10} =\frac{2\sqrt{895}}{10} =\frac{\sqrt{895}}{5} $
| 7.2h=57.2 | | 45=-x+193 | | 3x^2-43x-98=0 | | c/30=30/5 | | 53-3x=2 | | 5^x-6=25^2x | | -4=-2w+7(w+3) | | 68=3u=14 | | 9+3x+75=60 | | 20=2x-2 | | 3x-7=-1+4x | | -5x+8=6-6x | | 20x=+1214x+30 | | 7x-3+7x=13+6x | | q=14=8(q+7) | | (6x+16.8)+2x=x | | 50=15b | | 11=-x-7* | | a^2+13a-12=0 | | 53=8+7/y | | T(n)=T(6n/10)+n | | 14x-4=14x-4 | | 8^x=8000000 | | 49=h+19 | | (6/2)2-15x2/1=5 | | 9x+28=6x+115 | | 8x-8x=8x | | -2h-16=-3(h-2) | | (90-x)+(180-x)=120 | | 5+3x-2x^=0 | | 3(3x-2)=4x+14 | | -6-y/2=2 |